Towards Leakage Simulators that Withstand the Correlation Distinguisher

P. Pessl, *F.-X. Standaert*, S. Mangard, F. Durvaux IAIK TU Graz (Austria), UCL Crypto Group (Belgium) **ASIACRYPT rump session, December 2014**

Background

• Split & Concatenate Simulator (CRYPTO 2013) $L(x, k, y) \approx L(x, \tilde{k}, y^*) || L(x^*, \tilde{k}, y)$

- Split & Concatenate Simulator (CRYPTO 2013) $L(x, k, y) \approx L(x, \tilde{k}, y^*)||L(x^*, \tilde{k}, y)$
- Longo Galea et al (ASIACRYPT 2014): ∃ correlation between samples *within* real traces (e.g. ρ > 0.5) ... that are significantly reduced in simulated ones ⇒ Allows distinguishing!

Background

- Split & Concatenate Simulator (CRYPTO 2013) $L(x, k, y) \approx L(x, \tilde{k}, y^*)||L(x^*, \tilde{k}, y)$
- Longo Galea et al (ASIACRYPT 2014): ∃ correlation between samples *within* real traces (e.g. ρ > 0.5) ... that are significantly reduced in simulated ones ⇒ Allows distinguishing!
- Proposed solution: very noisy implementations, *but it scales badly*: noise arbitrarily reduced with averaging

Background

- Split & Concatenate Simulator (CRYPTO 2013) $L(x, k, y) \approx L(x, \tilde{k}, y^*)||L(x^*, \tilde{k}, y)$
- Longo Galea et al (ASIACRYPT 2014): ∃ correlation between samples *within* real traces (e.g. ρ > 0.5) ... that are significantly reduced in simulated ones ⇒ Allows distinguishing!
- Proposed solution: very noisy implementations, *but it scales badly*: noise arbitrarily reduced with averaging

Can we do better?

• Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$

- Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$
- Physical then \Rightarrow let's use a simple physical model

- Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$
- Physical then \Rightarrow let's use a simple physical model

- Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$
- Physical then \Rightarrow let's use a simple physical model

$$L(x, k, y) = \delta(x, k, y) + N$$

signal noise

 \Rightarrow Does the correlation come from signal or noise?

- Algorithmic? Unlikely: $\rho(x, \text{Sbox}(x)) \ll 0.5$
- Physical then \Rightarrow let's use a simple physical model

$$L(x, k, y) = \delta(x, k, y) + N$$

signal noise

 \Rightarrow Does the correlation come from signal or noise?

 In particular for *large parallel implementations* (since we know 8-bit AES implementations can be broken in one trace anyway – see SASCA paper)

Intra-trace correlation (real traces, sample 500)

• Intra-trace correlation (real traces, sample 500)

Same, with simulated traces $L(x, \tilde{k}, y^*)||L(x^*, \tilde{k}, y)|$

Intra-trace correlation (real traces, sample 500)

• Same, with simulated traces $L(x, \tilde{k}, y^*) || L(x^*, \tilde{k}, y)$

& fake simulated traces $\delta(x, k, y) + N_1 || \delta(x, k, y) + N_2$

Intra-trace correlation (real traces, sample 500)

• Sliding simulator

 $L(x, \tilde{k}, y^*) \cdot \square + L(x^*, \tilde{k}, y) \cdot \square$

Sliding simulator

$$L(x, \tilde{k}, y^*) \cdot \square + L(x^*, \tilde{k}, y) \cdot \checkmark$$

Real traces

Sliding simulator

$$L(x, \tilde{k}, y^*) \cdot \square + L(x^*, \tilde{k}, y) \cdot \checkmark$$

Real traces

Simulated traces

Sliding simulator

$$L(x, \tilde{k}, y^*) \cdot \square + L(x^*, \tilde{k}, y) \cdot \checkmark$$

Real traces

Simulated traces ER BUT NOT ENOUGH BE1 0.8 cross-correlation 0.6 0.4 0.2 0 -0.2 -0.4 L 500 1000 1500 2000 2500

• Sliding signal + noise simulator

• Sliding signal + noise simulator

avg. trace - single trace

Real traces

• Sliding signal + noise simulator

Real traces

Simulated traces

• Sliding signal + noise simulator

Real traces

Simulated traces

LOOKS GOOD (obviously no noise-related correlation)

Is it enough?

- Sliding S + N simulator prevents the ρ distinguisher in contexts where noise-based correlation dominates
 - (& the signal is hard to exploit/hybridize)
 - Achievable for certain large // implementations

Is it enough?

- Sliding S + N simulator prevents the ρ distinguisher in contexts where noise-based correlation dominates
 - (& the signal is hard to exploit/hybridize)
 - Achievable for certain large // implementations
 - Work in progress. Further investigations are needed
 - Maintain the signal variance (modified because of the sum in the sliding simulator): easy!
 - Different settings, simulators, designs, ...

Is it enough?

- Sliding S + N simulator prevents the ρ distinguisher in contexts where noise-based correlation dominates
 - (& the signal is hard to exploit/hybridize)
 - Achievable for certain large // implementations
- Work in progress. Further investigations are needed
 - Maintain the signal variance (modified because of the sum in the sliding simulator): easy!
 - Different settings, simulators, designs, ...

Reminder: simulatability is the only empirically verifiable leakage assumption we currently have!

STAY TUNED http://perso.uclouvain.be/fstandae/